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Abstract

Fetal alcohol spectrum disorders (FASD) are difficult to diagnose since many heavily

exposed infants, at risk for intellectual disability, do not exhibit craniofacial dysmorphology

or growth deficits. Consequently, there is a need for biomarkers that predict disability. In

both animal models and human studies, alcohol exposure during pregnancy resulted in sig-

nificant alterations in circulating microRNAs (miRNAs) in maternal blood. In the current

study, we asked if changes in plasma miRNAs in alcohol-exposed pregnant mothers, either

alone or in conjunction with other clinical variables, could predict infant outcomes. Sixty-

eight pregnant women at two perinatal care clinics in western Ukraine were recruited into

the study. Detailed health and alcohol consumption histories, and 2nd and 3rd trimester

blood samples were obtained. Birth cohort infants were assessed by a geneticist and clas-

sified as unexposed (UE), heavily prenatally exposed and affected (HEa) or heavily

exposed but apparently unaffected (HEua). MiRNAs were assessed in plasma samples

using qRT-PCR arrays. ANOVA models identified 11 miRNAs that were all significantly ele-

vated in maternal plasma from the HEa group relative to HEua and UE groups. In a random

forest analysis classification model, a combination of high variance miRNAs, smoking his-

tory and socioeconomic status classified membership in HEa and UE groups, with a mis-

classification rate of 13%. The RFA model also classified 17% of the HEua group as UE-

like, whereas 83% were HEa-like, at least at one stage of pregnancy. Collectively our data

indicate that maternal plasma miRNAs predict infant outcomes, and may be useful to clas-

sify difficult-to-diagnose FASD subpopulations.
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Introduction

Fetal Alcohol Spectrum Disorders (FASD) are a leading cause of intellectual disability in the
US and worldwide. The global prevalence of Fetal Alcohol Syndrome (FAS), the severe end of
the FASD continuum, is estimated at ~2.9‰, with regional prevalence estimates ranging up to
55.42‰, and the prevalence for FASD at 22.77‰, with regional highs of up to 113.22‰ [1].
FASD-associated cognitive and behavioral deficits (reviewed in [2]) contribute to the emer-
gence of secondary mental health disabilities [3, 4], and result in significant public health and
economic burdens [5].

Despite published prevention guidelines [6], FASD remains difficult to prevent, because
women with unplanned pregnancies, ~53% of pregnancies in US women aged 30 years and
younger [7], may not recognize their pregnancy status and episodically engage in heavy drinking
including binge drinking [8], a pattern that is particularly damaging to fetal development [9].
There is therefore, a significant need to identify affected children early, to facilitate early inter-
vention, and mitigate disabilities that emerge later in life [10]. However, early diagnosis is diffi-
cult, because while some heavily exposed infants exhibit distinctive facial dysmorphology, small
head-circumference and perinatal growth restriction [11], other heavily exposed children with
neurodevelopmental impairment do not exhibit readily identifiable dysmorphic features [12,
13] associated with FASD. Moreover, a documented history of drinking during pregnancy is
often difficult to ascertain [14]. Previous studies have identified ethanol metabolites in neonatal
meconium [15, 16], placenta [17], and in newborn dried blood spots [18] as biomarkers for fetal
alcohol exposure. However, these biomarkers are not specifically predictors of infant health out-
comes. Here we assessed microRNAs (miRNAs) that are present in maternal plasma during
pregnancy as potential predictors of infant outcomes, following prenatal alcohol exposure.

MiRNAs are small non-protein-coding RNA molecules that repress protein translation. In
2007, we showed that miRNAs were sensitive to alcohol [19] and mediated alcohol effects on
fetal neural [19, 20] and cranial development [21] in animal models. MiRNAs play an important
role in alcohol addiction [22–26] and neurotoxicity [27], alcohol-associated alterations in intes-
tinal and hepatic integrity [28, 29], inflammation [30], fibrosis [31], and bone remodeling [32].
Thus, miRNAs are not only sensitive to alcohol exposure, but also mediate many alcohol effects.

In 2008, evidence emerged that miRNAs were secreted into plasma [33] and could be used
to diagnose disease [34, 35]. Many organs are predicted to secrete miRNAs into circulation
[36], however, during pregnancy fetal tissues like the placenta are an additional source of miR-
NAs in maternal circulation [37]. Consequently, maternal plasma miRNAs have a dual origin
and may therefore serve as composite biomarkers for both maternal and fetal health. We found
that ethanol exposure in an ovine pregnancy model, altered maternal plasma miRNAs [38].
Recently, exposure during pregnancy in humans has also been shown to alter maternal serum
miRNA content [39]. These data collectively show that circulating miRNAs, like ethanol
metabolites, may be used as biomarkers for exposure to alcohol exposure during pregnancy.
However, the question that arises is, “can circulating miRNAs in the pregnant mother predict
infant outcomes?” To address this question, we assessed the relationship between miRNAs in
plasma samples obtained from pregnant women who reported varying levels of alcohol con-
sumption, to the presence or absence of FASD characteristics in their offspring.

Materials & Methods

Description of the Cohort

The sample for this study was drawn from a larger group of pregnant women and their infants
who were enrolled in a longitudinal cohort study conducted in two regions of Western Ukraine
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as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD.org)
between the years 2006 and 2011. The sites, a prenatal diagnostic center in the Rivne province
and a perinatal center in the Khmelnytsky province where women received prenatal care, were
members of the Omni-Net Ukraine Birth Defects Prevention Program. Recruitment methods
have been described in detail elsewhere [40, 41]. Briefly, pregnant women were screened for
alcohol consumption and selected for enrollment if they reported either frequent daily or
weekly episodic (binge) drinking in the month around conception or the most recent month of
pregnancy. For each enrolled woman who met the frequent or heavy drinking criteria, the next
eligible woman who reported infrequent or no alcohol consumption and no binge drinking
was also asked to participate. At enrollment, women provided written informed consent, and
were interviewed extensively about demographics, pregnancy and health history, tobacco and
other drug use. Women were asked about day-by-day alcohol consumption in the week around
conception (variables AAD0 and AADD0, Table 1) and the most recent two weeks of preg-
nancy (variables AADXP and AADDXP, Table 1) using the timeline followback procedure
[42]. The timeline follow back procedure generates day-by-day quantity and frequency esti-
mates of past alcohol and drug consumption with high test-retest reliability [43], and has been
validated for assessment of past alcohol use in populations of pregnant women [44]. Women
were enrolled in the study on average between 17 and 19 weeks of pregnancy (Table 1), and
therefore, the AADXP and AADDXP variables recorded alcohol consumption in the previous
two weeks, during the second trimester. Women were interviewed again in the third trimester
about alcohol consumption. Patient gestational age at enrollement, alcohol consumption esti-
mates and other demographic and clinical characteristics are outlined in Table 1. Blood sam-
ples were collected by venipuncture, into EDTA-coated tubes, from mothers at each of the two
interview timepoints, and centrifuged. Aspirated plasma samples were frozen, shipped to inves-
tigators in the U.S. and stored at -80°C until analysis.

After delivery, data were collected on gestational age at birth, birth size and sex of the infant.
Live-born infants subsequently received a study-related dysmorphological examination that
was conducted by a study geneticist (LY or NZZ) with specific training in FASD. Infants were
evaluted for the physical features of FASD and for growth using a standard checklist. At
approximately 6 and/or 12 months of age, infants were evaluated for neurobehavioral perfor-
mance by a study psychologist using the Bayley Scales of Infant Development, second edition
(BSID-II), and standard scores were obtained on the Mental Developmental Index (MDI) and
the Psychomotor Developmental Index (PDI) after adjustment for gestational age at delivery
and standardized for infant sex (Table 2).

Infants were classified as affected (having an FASD) if they were in the moderate to heavily
prenatally exposed group, and had at least two characteristic alcohol-related craniofacial fea-
tures (short palpebral fissures, smooth philtrum and thin vermilion border of the upper lip)
and growth deficiency, and/or neurobehavioral impairment defined as scores on the BSID-II
that were more than one standard deviation (15 points) below the mean on the MDI and/or
PDI adjusted for prematurity (Table 2). Study protocols were approved by Institutional Review
Boards at the Lviv National Medical University, Ukraine, and the University of California San
Diego and Texas A&M University in the US, and research was conducted according to the
principles expressed in the Declaration of Helsinki.

Description of the Sample

The sample for this analysis was selected based on the criteria of mother-infant pairs for whom
complete data were available on maternal alcohol exposure, a dysmorphological examination
and neurobehavioral testing of the infant, and the availability of maternal blood samples
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obtained at both enrollment and in the third trimester. The sample selected consisted of three
groups. The first group represented moderate to heavily-exposed mothers with an FASD-
affected child (HEa, n = 22); the second group represented moderate to heavily-exposed moth-
ers with an apparently unaffected child, i.e., no facial features, normal head circumference and
normal neurobehavioral test scores (HEua, n = 23); and low alcohol consuming or unexposed
mothers with an unaffected child (UE, n = 23). By group, maternal and infant characteristics
were summarized from the maternal interviews and infant examinations. Socioeconomic
status (sescat) as measured by the Hollingshead categories was based on maternal and paternal

Table 1. Maternal characteristics of the sample, Ukraine, 2006–2011.

Variable HEa (N = 22) HEua (N = 23) UE (N = 23) p-value

Mother’s age at enrollment (momage) 26.95 ±6.00 24.04 ± 4.40 26.30 ± 4.70 0.1377a

Gestational age at enrollment 18.60 ± 4.83 19.13 ± 5.90 17.94 ± 6.38 0.5051a

Recruitment site Khmelnytsky 50.0% (11) 17.4% (04) 21.7% (05) 0.0467b

Rivne 50.0% (11) 82.6% (19) 78.3% (18)

Marital status Married or cohabiting 72.7% (16) 91.3% (21) 100.0% (23) 0.0093 b

Single/separated/divorced 27.3% (06) 8.7% (02) 0.0% (00)

Education Less than high school 13.6% (03) 8.7% (02) 0.0% (00) 0.0246 b

High school or equivalent 54.5% (12) 60.9% (14) 30.4% (07)

Some college or higher 31.8% (07) 30.4% (07) 69.6% (16)

Socio-economic category (sescat, Hollingshead score) 55–66 9.1% (02) 8.7% (02) 17.4% (04) 0.0315 a

40–54 13.6% (03) 17.4% (04) 43.5% (10)

30–39 45.5% (10) 43.5% (10) 21.7% (05)

20–29 4.5% (01) 26.1% (06) 17.4% (04)

08–19 27.3% (06) 4.3% (01) 0.0% (00)

Gravidity >1 54.5% (12) 34.8% (08) 56.5% (13) 0.3032b

1 45.5% (10) 65.2% (15) 43.5% (10)

Parity >0 40.9% (09) 30.4% (07) 47.8% (11) 0.4767b

0 59.1% (13) 69.6% (16) 52.2% (12)

Body Mass Index 22.01 ± 4.55 22.75 ± 3.98 21.18 ± 3.05 0.3701a

Smoking status (smokstat) Current Smoker 31.8% (07) 21.7% (05) 0.0% (00) 0.0001 b

Never Smoked 22.7% (05) 21.7% (05) 95.7% (22)

Quit after realized pregnant 36.4% (08) 34.8% (08) 0.0% (00)

Quit Before Pregnancy 9.1% (02) 21.7% (05) 4.3% (01)

Number of cigarettes per day during pregnancy 2.50 ±4.34 0.87 ±2.26 0.00 ±0.00 0.0142 a

Multi-Vitamins after enroll No 36.4% (08) 39.1% (09) 43.5% (10) 0.2216a

Yes 63.6% (14) 60.9% (14) 56.5% (13)

Multi-vitamins pre-enroll No 36.4% (08) 21.7% (05) 26.1% (06) 0.5392a

Yes 63.6% (14) 78.3% (18) 73.9% (17)

Gestational age at 1st blood draw 19.09 ± 5.18 18.30 ± 5.82 18.00 ± 4.45 0.7241a

Gestational age at 2nd blood draw 32.95 ± 2.77 33.52 ± 2.50 32.26 ± 3.15 0.2238a

AAD0: Absolute ounces of alcohol per day at time of conception 0.69 ±0.65 0.50 ±0.27 0.00 ±0.00 0.0001 a

AADD0: Absolute ounces of alcohol per drinking day at time of conception 1.72 ±1.33 1.50 ±1.05 0.00 ±0.00 0.0001 a

AADXP: absolute ounces of alcohol per day in two weeks prior to enrollment 0.09 ±0.17 0.03 ±0.06 0.00 ±0.00 0.0003 a

AADDXP: Absolute ounces of alcohol per drinking day in two weeks prior to enrollment 0.55 ±0.79 0.24 ±0.35 0.00 ±0.00 0.0002 a

x ± y represents the mean ± standard deviation, (n) = sample size. P-values in Bold are statistically significant.
a Kruskal-Wallis Rank Sum Test
b Fisher’s Exact Test

doi:10.1371/journal.pone.0165081.t001
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education and occupation and was classified in category 1–5 with 1 being the highest. Pre-preg-
nancy body mass index (BMI) was calculated based on mother’s height and her self-reported
weight prior to conception. Smoking status (smokstat) was classifed as ‘never smoker’, ‘ever
smoker but quit before pregnancy’, ‘ever smoker but quit once recognized pregnant’, and
‘continued or current smoker in pregnancy’. Among current smokers, the average number of
cigarettes per day at the time of enrollment was captured. Maternal use of multivitamin supple-
ments was collected from interviews and classified as yes/no for vitamin use prior to enroll-
ment, and for vitamin use after enrollment. The amount of alcohol consumed in the week
around conception and in the most recent two weeks prior to enrollment was calculated by
daily alcohol type and quantity and classified into four summary variables: absolute ounces of
alcohol per day at the time of conception (AAD0), absolute ounces of alcohol per drinking day
at the time of conception (AADD0), absolute ounces of alcohol per day in the most recent two
weeks (AADXP) and absolute ounces of alcohol per drinking day in the most recent two weeks
(AADDXP). Maternal demographic data are summarized in Table 1, and infant outcome mea-
surements in Table 2.

MiRNA analysis

Plasma sample quality control analysis and RNA isolation was performed as outlined in Meth-
ods A in S1 File. MiRNA profiles were measured using Human miRCURY LNA™ microRNA
real-time PCR arrays (V3&4, Exiqon, Denmark), which assess 752 unique miRNAs [38, 45].

Table 2. Infant characteristics of the sample, Ukraine, 2006–2011.

Variable HEa (N = 22) HEua (N = 23) UE (N = 23) p-value

Child’s Sex (CSEX) Male 40.9% (09) 43.5% (10) 69.6% (16) 0.1098 b

Female 59.1% (13) 56.5% (13) 30.4% (07)

Height < 10th percentile No 86.3% (19) 100.0% (23) 95.7% (22) 0.1177 b

Yes 13.6% (03) 0.0% (00) 4.3% (01)

Weight < 10th percentile No 86.3% (19) 95.7% (22) 91.3% (21) 0.5129b

Yes 13.6% (03) 4.3% (01) 8.7% (02)

Occipital-Frontal Circumference < 10th percentile No 63.6% (14) 100% (23) 91.3% (21) 0.0009 b

Yes 36.4% (08) 0% (00) 8.7% (02)

Smooth Philtrum No 77.3% (17) 100.0% (23) 100.0% (23) 0.0025 b

Yes 22.7% (05) 0.0% (00) 0.0% (00)

Thin vermilion border No 63.6% (14) 100.0% (23) 69.6% (16) 0.0022 b

Yes 36.4% (08) 0.0% (00) 30.4% (07)

Palpebral Fissure <10th percentile No 45.5% (10) 100.0% (23) 95.7% (22) 0.0001 b

Yes 54.5% (12) 0.0% (00) 4.3% (01)
$MDI 6 month 81.95 ± 13.68 96.67±5.1 93.96±9.05 0.0005 a

#PDI 6 month 81.14 ± 15.82 99.28±9.99 96.22±10.56 0.0068 a

MDI12 month 81.10 ± 12.46 97.16±10.17 96.17±9.55 0.0056 a

PDI 12 month 90.81±16.21 106.84±10.38 103.17±11.46 0.0368 a

Gestational Age at Delivery 37.94 ± 2.51 40.00 ± 1.10 40.03 ± 1.07 0.0876 a

x ± y represents the mean ± standard deviation, (n) = sample size. P-values in Bold are statistically significant
$ Mental Developmental Index
# Psychomotor Development Index
a Kruskal-Wallis Rank Sum Test
b Fisher’s Exact Test

doi:10.1371/journal.pone.0165081.t002
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This platform has been shown in comparison tests, to detect miRNAs in biofluids with greater
sensitivity and specificity than other miRNA detection methods [46]. Methods and control
assays for specificity and sample contamination were performed as outlined in Methods B in
S1 File.

Placental Lactogen ELISA

Human Placental Lactogen (hPL) concentration in human plasma was quantitatively deter-
mined using a commercially available solid phase sandwich-type enzyme-linked immunoassay
(hPL micro-ELISA, Leinco Technologies, Inc., St. Louis, Missouri, USA). The chromogenic
reaction product was quantified spectrometrically (at 450nm, Tecan Infinite m200 with Magel-
lan v7.2 control software, Tecan, Austria) against a recombinant hPL (0–15 μg/ml) standard
curve.

Statistical modeling

Cycle Thresholds (CTs) were determined using SDS2.4 (ABI/Life Technologies). The CT for
all un-amplified (unexpressed) miRNAs was set to a value of 50. ΔCT for each miRNA in each
sample was calculated as the CTmiRNA_x—CTAverage_Expressed_miRNAs, i.e., normalized to the
average CT value for all of the expressed miRNAs in that sample. All miRNA identities in V3
and V4 Exiqon qPCR array platforms were cross-referenced to their unique mature sequence
accession number assigned in miRBase (MIMAT, www.mirbase.org, [47]), before data were
aggregated for statistical analyses. All subsequent data analyses were linked to MIMAT acces-
sion numbers. Data were analyzed using SPSS (V20, IBM, Armonk, New York), Gensifter1

analysis edition (GSEA, Geospiza/PerkinElmer, Seattle, WA) and R (V3.2.2, R Foundation
for Statistical Computing, Vienna, Austria). Data were subjected to Analysis of Variance
(ANOVA) or T-tests, with Benjamini and Hochberg false discovery rate (FDR) correction for
multiple comparisons (α = 0.05 or 0.1). Random forest analysis (RFA, [48]), a non-parametric
tree-based ensemble method of classification was implemented in the R ‘randomForest’ pack-
age (V4.6–10) as a means to predict group membership of maternal samples based on a combi-
nation of miRNAs and demographic variables (see Methods C in S1 File). As a prescreening
measure, we included in the RFA model, the 5% (37 out of 752) of sampled miRNAs with the
highest variance (while blinded to the class labels) in order to focus in on those miRNAs with
potentially the most predictively useful differences. In order to assess the prediction perfor-
mance of the RFA models, we used out-of-bag (OOB) sampling to compute the misclassifica-
tion rate [49]. Candidate miRNAs derived from ANOVA (11 miRNAs that exceeded FDR-
corrected P < 0.05) and from random forest analysis (top 5 predictive miRNAs) were subject
to pathway overrepresentation analysis using the Ingenuity Pathway Analysis1 software suite
(IPA, QIAGEN, see Methods D in S1 File).

Results

Cohort characteristics

Characteristics of the mothers and infants in each of the three groups in the sample are shown
in Tables 1 and 2. Notably, maternal age, pre-pregnancy body mass index (BMI), gestational
age at enrollment, gestational ages at blood draws, and the frequency of multivitamin use both
before and after enrollment, were similar across all three groups. There were some differences
by group in the distribution of women by site, and as expected, socioeconomic status and
maternal education levels were lower, and current smoking was higher in the moderate to
heavy alcohol-exposed groups compared to the low or unexposed group. Importantly, while
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alcohol consumption did significantly differ across groups (Table 1, Kruskal-Wallis Rank Sum
Test, all P’s < 0.0003 for AAD0, AADD0, AADXP and AADDXP), post-hoc analysis showed
that the HEa and HEua groups were not different from each other with respect to prenatal
alcohol exposure (Mann-Whitney U, AAD0, P = 0.21; AADD0, P = 0.54; AADXP, P = 0.16;
AADDXP, P = 0.093, data not shown). In addition, patterns of alcohol consumption among
women who smoked did not differ between the HEa and HEua groups (data not shown). In
terms of outcomes, gestational age at delivery was slightly lower in the HEa group compared to
HEua and UE groups, but overall, the differences were not statistically significant, and Bayley
Scales of Infant Development scores, as defined for group membership, were on average lower
in the HEa group than the two unaffected groups (Table 2).

All samples passed quality control analyses and showed no evidence for erythrocyte miRNA
contamination (S2 File and S1 Fig). We also found no effect of exposure group on hPL levels
(ANOVA, F(2,65) = 0.24, P = 0.79, Fig 1a), asessed near the end of the 3rd trimester. hPL is a sen-
sitive measure of placental health [50], and consequently placental damage is unlikely to
account for altered maternal miRNA profiles.

There was however, a significant effect of exposure condition on the quantity of recovered
plasma total RNA (ANOVA, F(2,124) = 9.86, P = 0.0001). On average 15% more total RNA was
isolated from an equi-volume of plasma obtained from control mothers (UE), compared to
alcohol-consuming mothers who subsequently gave birth to both affected (HEa) and unaf-
fected (HEua) infants (all post-hoc t-test P-values < 0.05, Fig 1b). However, there was no sig-
nificant effect of recruitment site (ANOVA, P = 0.41) and a marginal, though non-significant
difference due to pregnancy stage (ANOVA, P = 0.051).

Assessment of group differences in miRNA expression

We observed no group differences in total numbers of expressed miRNAs as a function of
recrutiment site (P = 0.74), exposure group (P = 0.99) or pregnancy stage (P = 0.67) by
ANOVA. We also did not observe significant differences in the average expression level of
expressed miRNAs as a function of exposure group (P = 0.53) or pregnancy stage (P = 0.45),
though there was a marginal, non-statistically-significant effect of recruitment site (ANOVA,
F(1,124) = 3.513, P = 0.063), on average miRNA expression. Further analysis indicated that a

Fig 1. Placental Lactogen (hPL) and total RNA content in maternal plasma samples. (a) Plasma placental

lactogen content in late pregnancy was not significantly different among HEa, HEua and UE groups. (b) Analysis of total

plasma RNA content indicated that there was a statistically significant, ~15% decrease in total RNA recovery in the

alcohol exposure groups (HEa and HEua) compared to UE controls.

doi:10.1371/journal.pone.0165081.g001
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single miRNA, miR-29b, was significantly increased by ~200-fold in maternal samples
obtained at mid-pregnancy from Khmelnytsky compared to Rivne (FDR-adjusted t-test,
P = 0.047). However, no miRNAs were significantly altered as a function of recruitment site at
the end of pregnancy.

In a 2-way ANOVA assessing the main effects of pregnancy stage and exposure group, and
using a 2-ΔCT threshold for between-group changes as a cutoff, to eliminate smaller and per-
haps non-biologically relevant group differences, we identified 11 miRNAs that exceeded a
FDR of α = 0.05 and a total of 21 that exceededα = 0.1 for the main effect of exposure condi-
tion (Fig 2a). Interestingly, a majority of significantly altered miRNAs were increased in plasma
samples from women in the HEa group at both mid- and late-pregnancy compared to both
HEua and UE groups (i.e., HEa>(HEuaffiUE)). This effect was stronger for miRNAs that
exceeded the FDR-corrected criterion of P < 0.05 compared to P < 0.1 (Fig 2b). Cluster analy-
sis of miRNAs that exceeded the FDR-corrected criterion of P < 0.1 emphasized our finding
that these miRNAs discriminated between the HEa group and both other groups, and that the
UE control group was similar to the HEua group (Fig 2c). No miRNAs exceeded the FDR
threshold of α = 0.1 for the effect of pregnancy stage.

Fig 2. ANOVA model identifies maternal plasma miRNAs elevated specifically in the HEa group. (a) List of miRNAs that pass the FDR-

corrected criterion of P < 0.05. Color scale ranges from 10th (green) to 90th (red) percentile of expression. miRNA expression in the HEa group

at both mid and late pregnancy was generally elevated compared to expression in all other groups (for additional detail, see S2 Fig). (b)

Average expression of miRNAs that exceed P < 0.05 and P < 0.1 BH-corrected criteria. (c) Cluster analysis (with Euclidean distance and

average linkage) of miRNAs that exceed the BH-corrected P < 0.1 criterion indicates that HEua and UE groups cluster together and are

different from HEa groups at mid and late pregnancy. MP, mid-pregnancy; LP, late pregnancy; MIMAT#######, miRNA unique ID as in

mirbase.org.

doi:10.1371/journal.pone.0165081.g002
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Random Forest Analysis and prediction of HEua group membership

The above analyses collectively show that plasma miRNA profiles can predict infant outcomes,
i.e., the presence of dysmorphia and/or neurobehavioral impairment in infancy due to prenatal
alcohol exposure. However, the group of prenatally exposed infants with dysmorphic features
and/or neurobehavioral impairment measurable in early life are relatively easy to identify and
diagnose, while it is significantly more difficult to identify the class of heavily prenatally-
exposed infants who do not exhibit obvious dysmorphia or early evidence for developmental
delay. To determine the extent to which members of the HEua group could be classified as
more like the HEa or UE control group, we first selected the 37 miRNAs (5% of the 752 sam-
pled miRNAs) exhibiting the highest variance irrespective of group membership. Prelimnary
analyses, indicated that the 5% criteria represented the best balance between miRNA number
and OOB mis-classification rate (S3 Fig). We addiitonally included demographic, clinical and
other pregnancy-associated variables (maternal age, maternal multivitamin use before and
after enrollment, maternal smoking status (categorical), socioeconomic status category, gravid-
ity, parity, and infant sex) to the random forest model to predict group membership in a com-
parison of the HEa and UE control group.

Our analyses show that the HEa and UE groups can be classified into their respective groups
with an overall OOB mis-classification rate (proportion of misclassified observations) of 13.3%
(i.e., 6 out of 45 samples missclassified, Model 1, Fig 3a and S4 Fig). The classification model
more accurately assigned membership of UE samples to the UE group, with a classification
error rate of 8.7%, whereas the error rate for the HEa group was 18.2% (2 out of 23 and 4 out of
22 samples respectively, Fig 3a). Demographic variables including a history of smoking and
socioeconomic status contributed heavily to the accuracy of classification. However, miRNAs,
including hsa-miR-503-5p (MIMAT0002874) and hsa-miR-423-3p (MIMAT0001340) which
were predictors at mid-pregnancy as well as in late pregnancy, constituted 7 out of the top 10
predictors of class membership. We next asked if a change in miRNA expression from mid- to
late-pregnancy (ΔΔCT) could perform as a better classifier of class membership. However, the
OOB mis-classification rate for the UE vs HEa comparison increased to 24.4% (Model 2, Fig 3b
and S4 Fig), largely due to an increased mis-classification rate (26.1%) in the UE group. We
earlier observed that we recovered ~15% less total RNA in HEa and HEua groups compared to
UE group (Fig 1b). Total circulating RNA is heterogenous in composition and includes a num-
ber of classes of small [51]) and large RNAs [52]. Moreover, the ANOVA model identified sev-
eral miRNAs that were selectively increased in the HEa group (Fig 2) but not HEua group,
suggesting that this variable, total RNA, may contain additional information for class predic-
tion, not contained in the miRNA analyses. Therefore total RNA was included in a secondary
analysis. However, inclusion of the total RNA variable resulted in an overall misclassification
rate of 17.78% for model 1 and to 24.44% for model 2 (S5 Fig, panels a and b), indicating that
addition of this variable did not improve classification.

We next asked whether the identified predictive variables could be used to assign members
of the HEua group to HEa and UE groups. Based on the RFA model, 17% of the HEua group
could be classified completely as the UE group throughout pregnancy, while 83% were more
like the HEa group at some time during pregnancy. Among the HEa-like group, a majority
remained stably classified as HEa-like throughout pregnancy or were identified as more HEa-
like by the end of pregnancy, though a smaller sub-population of the HEa-like group moved
towards the UE-like classification by the end of pregnancy (Fig 4). Including total RNA in the
prediction model, 78% of the HEua group were classified as HEa-like at some time during preg-
nancy and 22% were classified as UE-like (S5 Fig, panel c). The total RNA-containing model
resulted in increased homogeneity in the portion of the HEua group that was classified as HEa-
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like. In this prediction model, only 4% of the HEua group who were classified as HEa-like at
mid pregnancy moved towards the UE-like classification by the end of pregnancy. Collectively
these data indicate that, whereas an analysis of variance strategy emphasised the similarity of
the HEua group to the UE group, the random forest classification model preferentially associ-
ated the HEua group with the HEa group, i.e., (HEaffiHEua)6¼UE.

Fig 3. Random Forest Analysis (RFA) classifies HEa and UE maternal samples into distinct groups. (a) RFA

analysis comparing HEa and UE groups at mid (MP) and late (LP) pregnancy resulted in an overall classification error

rate of 13% (18.2% for the HEa group and 8.7% for the UE group). miRNAs constituted 7 out of the top 10 variables that

contributed to classification accuracy. Graph depicts Mean Decrease Accuracy (the effect of permuting a variable on

prediction after training) on the X-axis and contributory variables in order of decreasing importance on the Y-axis.

Astrisks indicate miRNA variables that contributed to prediction accuracy at mid- and late-pregnancy. (b) RFA analysis

with difference in miRNA expression (ΔΔCT) between mid and late pregnancy. The overall misclassification rate

increased to 24.4%. However, a plot of ‘Mean Decrease Accuracy’ (Y-axis) against variables (X-axis) showed that

miRNAs constituted 6 out of the top 10 predictive variables. miRNAs in red text represent variables present in both model

1 and 2. For additional details, see S4 Fig. Smokstat, sescat, parity and momage are as defined in Table 1, CSEX is as

defined in Table 2.

doi:10.1371/journal.pone.0165081.g003
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Predictions of function

Plasma miRNAs may function as endocrine factors to influence recipient cells and tissues [53].
To assess potential endocrine functions, eleven miRNAs that exceeded the FDR-corrected
ANOVA criterion of P < 0.05 (HEa>(HEuaffi UE)), and the five unique miRNAs among the
top 10 contributory variables by RFA ((HEaffiHEua)6¼UE) were subject to pathway overrepre-
sentation analysis. IPA models showed that despite non-overlapping miRNA content, both
groups are predicted to influence common downstream pathways related to fetal and placental
growth as well as distinct downstream pathways (Fig 5a and 5b). For example, the Stat3 and
Ephrin A pathways and epithelial-mesenchymal transition (EMT) were predicted to be com-
mon targets, whereas prolactin signaling was specifically associated with the ANOVA model
(HEa>(HEuaffi UE) and the GADD45 pathway with the RFA model ((HEaffiHEua)6¼UE).
Further analysis of the common predicted pathways indicate that Ephrin, Stat3 and EMT path-
ways are core members of a highly interconnected and potentially coordinately regulated sig-
naling network (Fig 5c) that is critical for placental and fetal growth and maturation.

Discussion

FASD is a significant global health problem, but is difficult to prevent due to the combined
prevalence of unplanned pregnancies and patterns of heavy alcohol consumption in women of
childbearing age. The average gestational age at enrollment in our study was 18–19 weeks and
many women reported alcohol use in the previous month, well into the critical period for neu-
rogenesis and the addition of new neurons to the developing fetal brain [54]. An additional
complication is that many prenatally exposed infants do not exhibit craniofacial dysmorphol-
ogy or growth deficits that facilitate diagnosis. Thus in the current study population, equally
heavily exposed mothers gave birth to both affected and apparently unaffected infants, i.e.,
HEa and HEua groups. Nevertheless, HEua offspring may exhibit later neurodevelopmental

Fig 4. Classification of maternal samples from the HEua group. Pie chart shows classification of the

HEua group as either like HEa or HEua groups. 17% of pregnant mothers assigned to the HEua group were

classified as UE-like throughout pregnancy. 52% were either like the HEa (30%) throughout pregnancy or

moved from being UE-like at mid pregnancy to HEa like (22%) by the end of pregnancy. However, 31% of

HEua mothers were HEa-like at mid pregnancy, but more UE-like by the end of pregnancy.

doi:10.1371/journal.pone.0165081.g004
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deficits that are not readily identifiable in infancy [12, 13]. Previous studies showed that circu-
lating miRNAs in the pregnant mother are promising biomarkers for alcohol exposure in ani-
mal models [38] and in human populations [39]. We report here that plasma miRNAs in the
pregnant mother may also be useful as a means to predict infant outcomes due to prenatal alco-
hol exposure.

The ANOVA model, which favors minimal within-group variance relative to systematic
variance, selected miRNAs that were generally induced in the HEa group in both mid- and
late-pregnancy, compared to HEua and UE groups, while minimizing differences between the
latter two groups (HEa>(HEuaffi UE). These miRNAs represent a maternal signature for risk
in the HEa group, i.e., for giving birth to an affected infant. Moreover, this miRNA signature
for prenatal ethanol effect could be observed as early as the second trimester of pregnancy and
the detection of such a signature may facilitate early intervention to promote maternal-fetal

Fig 5. Pathway overrepresentation analysis to assess functions of predictive plasma miRNAs. Pathway overrepresentation

analysis was performed using IPA software on targets of the eleven miRNAs that exceeded the FDR-corrected ANOVA criterion of

P<0.05 (HEa>(HEuaffiUE), and the five unique miRNAs among the top 10 contributory variables by random forest analysis ((HEaffi

HEua)6¼UE). (a) The -log10 p-values of significantly enriched pathways (P < 0.05) for both the ANOVA model and the RFA model were

plotted against each other with transformed significance values for pathways exclusively enriched among the ANOVA model depicted in

blue, the RFA model in green, and pathways enriched in both the RFA and ANOVA models in red. (b) A heat map was constructed of the

top 25 significantly enriched pathways among the RFA and ANOVA models. (c) The 17 pathways enriched among both the RFA and

ANOVA model share a high degree of interconnectedness. Proteins outlined in red indicate overlapping targeting by miRNAs in both the

RFA and ANOVA models.

doi:10.1371/journal.pone.0165081.g005
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health. It is likely that at least some miRNAs identified in the ANOVA model may be
general indicators of risk for adverse pregnancy outcomes. For example, miR-222-5p
(MIMAT0004569) which was elevated in the HEa group, is also reportedly elevated in pla-
centas from women diagnosed with severe preeclampsia [55], which, like prenatal alcohol
exposure, is an important cause of fetal intrauterine growth restriction (IUGR) in human pop-
ulations [56]. Similarly, elevation of miR-299-3p (MIMAT0000687), as observed in the HEa
group, has been shown to result in senescence of umbilical vein endothelial cells [57] which
may also impair fetal growth. Research with animal models convincingly shows that prenatal
alcohol compromises placental growth and function [58], and that these deficits correlate with
fetal growth restriction [59], a characteristic of the HEa group. Therefore, one explanatory
hypothesis is that the ANOVA model identified plasma miRNA in the HEa group that are bio-
markers for functional insufficiency of the placenta and associated structures, which in turn
increase the risk for adverse infant outcomes.

The ANOVA model did not help identify alcohol-exposed pregnancies that did not result in
immediately obvious adverse infant outcomes. To better classify the HEua group, we adopted
the RFA classification model. High variance miRNAs (selected without attention to the source
of variance) along with a history of cigarette smoking and socioeconomic status, achieved
a promising classification error rate of ~13% when comparing the HEa and UE groups.
MiRNAs like miR-503-5p (MIMAT0002874) and miR-423-3p (MIMAT0001340) were stable
contributors to prediction accuracy in both mid- and late pregnancy, whereas miR-337-3p
(MIMAT0000754) contributed to prediction accuracy in late pregnancy. Importantly, using
this model, we were able to segregate the HEua group into two sub-populations. The majority
sub-population (83%) was more like the HEa group either throughout, or at one stage of preg-
nancy, while a smaller sub-population (17%) was more like the UE group consistently through-
out pregnancy. Interestingly, a sub-population of the group classified as HEa-like at mid-
pregnancy were predicted to be more like the controls by the end of pregnancy. This shift in
classification suggests that currently unknown genetic or environmental resiliency factors may
protect some pregnancies against adverse outcomes. It will be important to track neurocogni-
tive performance in subcategories of the HEua group, as these children grow older, to deter-
mine whether our predictive models do indeed categorize future risk. These assessments are
currently being performed.

While miRNAs contributed to the overall accuracy of group classification, two important
variables, smoking history and socioeconomic status contributed significantly to the accuracy
of classification of HEa and UE groups. The relationship between high variance miRNAs and
smoking history or socioeconomic status is unknown at this time, but clearly, more research is
needed to understand why these factors collectively contribute to predicting outcomes. Ongo-
ing smoking during pregnancy may be a proxy measure for ongoing heavy alcohol consump-
tion. However, cigarette smoking is also a well-established causal factor for fetal growth
restriction [60, 61] and therefore, concurrent smoking may increase the severity of effects due
to prenatal alcohol exposure. We also previously reported that both alcohol and nicotine target
common miRNAs [20, 62]. Therefore, the predictive strength of maternal plasma miRNAs for
infant outcomes may in part be determined by the history of smoking. Since 5 out of 7 mem-
bers (71%) of the HEua group who were classified as HEa-like in the second trimester but as
UE-like in the third trimester reported quitting smoking upon realization of pregnancy, smok-
ing cessation programs during pregnancy may independently mitigate harm due to prenatal
alcohol exposure.

Socioeconomic status, the second important contributory classification variable is strongly
associated with health status and is thought to encompass a variety of physical and psychoso-
cial stressors [63] that are likely to adversely influence fetal growth and development during
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pregnancy [64], and amplify deficits due to prenatal alcohol exposure [65]. Moreover, stress
has also been show to alter circulating miRNA expression profiles [66], and consequently,
socioeconomic status may also contribute to the alterations in miRNA expression observed in
the current study. It is encouraging to note that interventions such as social enrichment, which
may be expected to mitigate effects of socioeconomic status, have recently been shown to
reverse effects of prenatal ethanol exposure on miRNA expression profiles [67]. Both socioeco-
nomic status and current smoking have been identified as risk factors for FASD in other
populations as well [68]. As with smoking cessation, strategies to minimize the effects of socio-
economic status may also minimize the effects of prenatal alcohol exposure.

At this time, we do not know which tissues and cell-types contribute circulating miRNAs
that discriminate between the HEa and UE groups or permit classification of HEua group
members. Plasma miRNAs are likely to represent a composite of cellular secretory activity and
cell death mechanisms (reviewed in [69]), and while currently a controversial concept, these
miRNAs may also constitute a novel class of endocrine factors that regulate protein translation
in recipient cells [70–72]. The fetus may also contribute functional miRNAs to maternal circu-
lation. For example, fetal cell-free RNA molecules appear in maternal plasma early during
pregnancy and are maintained throughout pregnancy [73, 74], and trophoblast-secreted miR-
NAs have been shown to influence target gene expression in maternal immune cells [75]. Irre-
spective of their tissue source, the identified miRNAs are predicted to control important
biological processes associated with fetal growth. For example, though third trimester placental
lactogen levels were not altered in our study, we identified downstream prolactin signaling,
which regulates angiogenesis [76] and maternal insulin metabolism [77] during pregnancy, as
a candidate HEa group-specific miRNA-targeted pathway. In contrast, the Growth Arrest and
DNA Damage-inducible 45 (GADD45) pathway, a pro-apoptotic pathway that is elevated in
response to environmental stress [78] was preferentially identified as a candidate pathway in
RFA model which emphasized commonalties between HEa and HEua groups. Despite non-
overlapping miRNA content, both HEa>(HEuaffi UE) and (HEaffiHEua)6¼UE class miRNAs
are nevertheless predicted to target a highly interconnected set of cytokine and growth factor
pathways including Stat3 and Ephrin signaling pathways that converge on the epithelial-to-
mesenchymal transition (EMT) process. The growth and maturation of the placenta is under-
stood to be an EMT-like process [79] and placental angiogenesis and trophoblast invasion is
mediated by activation of Stat3 [80] and ephrin [81] pathways. Collectively, our predictive
models suggest that HEa>(HEuaffi UE) and (HEaffiHEua)6¼UE class maternal miRNAs are
likely to both serve as biomarkers and functional mediators for important fetal developmental
pathways.

In this pilot study, we present evidence that plasma miRNA profiles in the pregnant mother
do predict alcohol-related infant health outcomes and help classify prenatal alcohol-exposed
infants who are at risk for intellectual disability. Importantly, demographic variables like smok-
ing history and socioeconomic status contribute significantly to the accuracy of risk assess-
ment, but may also be modifiable causal factors and targets for perinatal intervention.
However, these data should be viewed as preliminary and with caution. It will be important to
assess whether maternal miRNA profiles discriminate between FASD and, in some respects
phenotypically similar syndromes, including Williams and 22q11 deletion syndromes that
have a clear genetic etiology, but also result in intellectual disability. The role of geography, eth-
nicity and other factors in the biofluid miRNA response to alcohol exposure during pregnancy
also require further investigation. In this context, a recent study on the effects of alcohol con-
sumption on serum (rather than plasma) miRNAs in a population of pregnant women in New
Mexico [39] identified a markedly different group of alcohol-responsive miRNAs. The intent
of that study was to assess miRNAs as biomarkers of exposure rather than outcome, and
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assessment platforms (microarray hybridization vs. qRT-PCR), biofluid source (serum vs.
plasma), geography and population ethnicity all differed from the current study, and likely
contributed to differences in outcomes. However, since platelets release miRNAs during the
coagulation cascade [70], serum and plasma differ in miRNA content even when obtained at
the same time, from the same patient [82]. While other intervening variables cannot be dis-
counted, and require further investigation, it is possible that the New Mexico study uncovered
an important effect of maternal alcohol exposure on acute hemostasis, whereas our study
uncovered a more persistent, stable miRNA response to the effects of alcohol exposure. How-
ever, the results of both studies also leave open the possibility that the miRNAs that are signifi-
cantly altered by alcohol exposure in the pregnant woman may not be the same as those which
predict infant outcomes. Finally, several studies have shown that secreted miRNAs are biologi-
cally functional [70–72]. Therefore, maternal circulating miRNAs may also be targeted in
future for therapeutic intervention, to promote fetal growth and development, especially in
pregnancies that are predicted to result in adverse infant outcomes.
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